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Convergence results Asymptotic Expansion Correctors Abstract Singular Perturbations

We consider, on Ω = (0,1)× (0,1), a diffusion problem where
the diffusion velocity is very small in the direction x1 (ε ' 0){

−ε2∂2
x1

uε − ∂2
x2

uε = f in Ω,

uε = 0 on ∂Ω.

When ε→ 0 the candidate limit is u0 solution to{
−∂2

x2
u0 (·, x1) = f dans (0,1) ,

uε = 0 sur {0,1} .

Different issues are developed around the study of the limit

uε → u0 lorsque ε→ 0.
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Arbitrary domains

X1 ∈ Rp,X2 ∈ Rn−p, Ω : a bounded open subset of Rn.
ΩX1 = {X2 | (X1,X2) ∈ Ω }, ΩX2 = {X1 | (X1,X2) ∈ Ω }.

Let A =
(
aij(x)

)
be a n × n definite positive matrix. We

decompose A into four blocks by writing

A =

(
A11 A12
A21 A22

)
,

where A11, A22 are respectively p × p and (n − p)× (n − p)
matrices. We then define for ε > 0, the perturbed matrix,

Aε =

(
ε2A11 εA12
εA21 A22

)
.

Let us consider the following elliptic problem
∫

Ω
Aε∇uε · ∇v dx = 〈f , v〉,

uε ∈ H1
0 (Ω),

(1)

f ∈ L2(Ω).
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Arbitrary domains

When ε→ 0 the candidate limit of uε is u0 = u0(X1, ·) defined
for a.e. X1 ∈ ΠΩ as solution to v ∈ H1

0 (Ω),
∫

ΩX1

A22∇X2u0(X1,X2) · ∇X2v(X2) dX2 =

∫
ΩX1

f (X1,X2)v(X2) dX2

u0(X1, ·) ∈ H1
0 (ΩX1).

(2)

We now have to precise in which sense the convergence
uε → u0 will take place.

Theorem

We have

ε∇X1uε −→ 0, uε −→ u0, ∇X2uε −→ ∇X2u0 in L2(Ω).
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Arbitrary domains

Proof:

H uε, |ε∇X1uε|, |∇X2uε| are bounded in L2(Ω).
H uε ⇀ u0, ∇X2uε ⇀ ∇X2u0 and ε∇X1uε ⇀ 0 in L2(Ω).
H Passing to the limit, we obtain∫

Ω
A22∇X2u0 · ∇X2v dx =

∫
Ω

fv dx ∀ v ∈ H1
0 (Ω).

H We can show

Iε =

∫
Ω

Aε

(
∇X1uε

∇X2(uε − u0)

)
·
(

∇X1uε
∇X2(uε − u0)

)
dx → 0. (3)

H It follows that ε∇X1uε −→ 0,
uε −→ u0 ∇X2uε −→ ∇X2u0 in L2(Ω).
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Cylindrical domains

Ω = ω1 × ω2 où ω1 ⊂ Rp, ω2 ⊂ Rn−p. ΩX1 = ω2, ΩX2 = ω2

and
the problem (2) can be written, for all v ∈ H1

0 (ω2)
∫
ω2

A22 (X1,X2)∇X2u0 · ∇X2v dX2 =

∫
ω2

f (X1,X2) v dX2

u0 (X1, ·) ∈ H1
0 (ω2).

(4)
Note that

u0 /∈ H1
0 (Ω) =⇒ ∇X1uε 9 ∇X1u0. (5)

Nevertheless, we can show that (ω′1 ⊂⊂ ω1)

|uε − u0|L2(ω′1×ω2) ,
∣∣∇X2 (uε − u0)

∣∣
L2(ω′1×ω2) = O (ε) ,

∇X1uε ⇀ ∇X1u0 weakly in L2 (ω′1 × ω2
)
.

Moreover if we suppose that A12 = AT
21 = 0, Then we have

|uε − u0|L2(ω′1×ω2) ,
∣∣∇X2 (uε − u0)

∣∣
L2(ω′1×ω2) = o (ε) ,∣∣∇X1 (uε − u0)

∣∣
L2(ω′1×ω2) = o (1) , uε → u0 in H1 (Ω′) .
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Cylindrical domains

A necessary and sufficient condition to obtain the above
convergence∫

Ω
A12∇X2u0 ·∇X1v dx +

∫
Ω

A21∇X1u0 ·∇X2v dx = 0 ∀v ∈ H1
0 (Ω).

(6)

For example if A =

(
1 1
0 1

)
we have

uε → u0 in H1 (Ω′)⇐⇒ u0 is independent of x1.

If u0 = u0 (X2) , the hypothesis (7) can be reduced to∫
Ω

A12∇X2u0 · ∇X1v dx = 0 ∀v ∈ H1
0 (Ω).

Moreover
|uε − u0|H1(Ω′) ≤ Ce−

α
ε .
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A rate of convergence as

uε − u0 = o (ε) in L2 (ω′1 × ω2
)
, ω′1 ⊂⊂ ω1

can not take place if

∇X1 · A12∇X2u0 +∇X2 · A21∇X1u0 6= 0 on ω1 × ω2. (7)

In order to improve the rate of convergence, we consider an
approximation wε of uε depending on ε expressed as a
polynomial in ε i.e.

wN
ε = u0 + εu1 + · · ·+ εNuN .
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Formally, if we substitute the asymptotic expansion into (1), we
then deduce that the coefficient uN are solutions, for a.e.
X1 ∈ ω1, to

−∇X2 ·
(
A22∇X2u0(X1, ·)

)
= f (X1, ·) in ω2,

u0(X1, ·) ∈ H1
0 (ω2),

and for N ≥ 1
−∇X2 ·

(
A22∇X2uN(X1, ·)

)
= ∇X1 · (A11∇X1uN−2(X1, ·))

+∇X1 ·
(
A12∇X2uN−1(X1, ·)

)
+∇X2 ·

(
A21∇X1uN−1(X1, ·)

)
in ω2,

uN(X1, ·) ∈ H1
0 (ω2).

(u−1 = 0)
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Smoothness results

In order to define wε as function we need the following
regularity theorem.

Theorem

Let m ∈ N and g ∈ L2(Ω) such that

Dm
X1

g ∈ L2(Ω), Dm
X1

A22 ∈ L∞(Ω).

The elliptic boundary problem−∇X2 ·
(
A22∇X2u(X1, ·)

)
= g(X1, ·) in ω2,

u(X1, ·) ∈ H1
0 (ω2).

(8)

has a unique solution u satisfying

Dm
X1

u, Dm
X1

(
∇X2u

)
∈ L2(Ω). (9)

( Dm
Xi

denotes the mixed derivatives in Xi of order up to m).
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Smoothness results

To ensure the existence of uN in H1(Ω) we need

D2
X1

A11, D2
X1

A12, D1
X1

A22 ∈ L∞(Ω),

D3
X1

uN−2, D2
X1

uN−1, D2
X1

D1
X2

uN−1 ∈ L2(Ω).

Applying the above theorem many times we deduce that this
leads to

DN
X1

A11, DN+1
X1

A12, DN
X1

A21, DN
X1

A22 ∈ L∞(Ω),

DN+1
X1

u0, DN+1
X1

DX2u0 ∈ L2(Ω).
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Main results

This implies that

DN
X1

A11, DN+1
X1

A12, DN
X1

A21, DN+1
X1

A22 ∈ L∞(Ω), DN+1
X1

f ∈ L2(Ω).
(10)

We set RN(·; ε) = uε −
∑N

i=0 ε
iui .

Theorem

For any ω′1 ⊂⊂ ω1, it holds that, when ε→ 0, in L2 (ω′1 × ω2
)
,

RN(·; ε), ∇X2RN(·; ε) = O
(
εN+1

)
, ∇X1RN(·; ε) = O

(
εN
)
.

(11)

The tool:

suppρ ⊂ ω1, ρ = 1 on ω′1, 0 ≤ % ≤ 1 et
∣∣∇X1%

∣∣ ≤ C. (12)

Then testing with v = ρ2Rε ∈ H1
0 (Ω),
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Main results

Suppose that (10) holds for N + 1,

then in particular we have

DN+1
X1

A11, DN+1+1
X1

A12, DN+1
X1

A21,DN+1+1
X1

A22 ∈ L∞(Ω),

DN+1+1
X1

f ∈ L2(Ω).

∣∣∇X1RN+1(·; ε)
∣∣
L2(ω′1×ω2) = O

(
εN+1

)
. (13)

This implies

∇X1RN(·; ε) = ∇X1RN+1(·; ε) + εN+1∇X1uN+1 = O
(
εN+1

)
Then we end up with

|RN(·; ε)|H1(ω′1×ω2) = O(εN+1). (14)
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Main results

Theorem

Consider the following assertions, for any ω′1 ⊂⊂ ω1,
i) uN+1 = 0,,
ii) the following condition holds,

∇X1 ·
(
A11∇X1uN−1

)
+∇X1 ·

(
A12∇X2uN

)
+∇X2 ·

(
A21∇X1uN

)
= 0 in Ω,

(15)
iii) as ε −→ 0

1
εN+1

[
uε − (u0 + εu1 + · · ·+ εNuN)

]
⇀ 0 in L2 (ω′1 × ω2

)
,

iv) as ε −→ 0,

uε − (u0 + εu1 + · · ·+ εNuN) = O(εN+2) in V
(
ω′1 × ω2

)
,
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Main results

Theorem

v) uN+1 = 0, uN+2 = 0,
vi) the conditions (??) and the following hold

∇X1 ·
(
A11∇X1uN

)
= 0 in D′ (Ω) .

vii) uk = 0, ∀k > N,
viii) as ε −→ 0,

1
εN+2∇X2

[
uε − (u0 + εu1 + · · ·+ εNuN)

]
⇀ 0 in L2 (ω′1 × ω2

)
ix) as ε −→ 0 and for some η > 0,

uε − (u0 + εu1 + · · ·+ εNuN) = O
(
exp(−ηε )

)
in H1(ω′1 × ω2).
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Main results

Theorem

Then we have

i)⇔ ii)⇔ iii ⇔ iv)⇐ v)⇔ vi)⇔ vii)⇔ viii)⇔ ix).
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Diagonal structure

If A is a diagonal matrix by block

A =

(
A11 0
0 A22

)
,

we have
u2k+1 = 0, k ∈ N.

Then, it follows that

|R2N (·; ε)|L2(ω′1×ω2) ,
∣∣∇X2R2N (·; ε)

∣∣
L2(ω′1×ω2) = O(ε2N+2),∣∣∇X1R2N (·; ε)

∣∣
L2(ω′1×ω2) = O(ε2N+1).

Moreover, if we replace in (10), 2N by 2N + 2

|R2N (·; ε)|H1(ω′1×ω2) = O(ε2N+2). (15)
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Cylindrical symmetries

We suppose that

A =

(
A11 (X1,X2) A12 (X2)

A12 (X2) A22 (X2)

)

where A11 is a first order polynomial in X1 and f is a polynomial
of degree k ∈ N, i.e.

f (X1,X2) =
∑
|α|≤k

Xα
1 fα (X2) , fα ∈ L2 (ω2) .

Under the above assumptions, there exist constants C, α > 0
independents of ε > 0 such that

|R2k (·; ε)|H1(ω′1×ω2) ≤ Ce
−α
ε . (16)
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Cylindrical symmetries

Formally, if we substitute the asymptotic expansion into (1), we
then deduce that the coefficient uN are solutions, for a.e.
X1 ∈ ω1, to−∇X2 ·

(
A22∇X2u0(X1, ·)

)
= f (X1, ·) in ω2,

u0(X1, ·) ∈ H1
0 (ω2),

and for N ≥ 1
−∇X2 ·

(
A22∇X2uN(X1, ·)

)
= ∇X1 · (A11∇X1uN−2(X1, ·))

+∇X1 ·
(
A12∇X2uN−1(X1, ·)

)
+∇X2 ·

(
A21∇X1uN−1(X1, ·)

)
in ω2,

uN(X1, ·) ∈ H1
0 (ω2).

(u−1 = 0)
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We consider the problem−ε
2∂2

X1
uε −∆X2uε = f in Ω̃ = (0,1)× ω,

uε = 0 on ∂Ω̃� {0} × ω, ∂uε
∂X1

= 0 on {0} × ω.
(17)

We have
uε → u0 in H1((0,1− α)× ω)

The aim next is to describe the behaviour of uε near the section
{1} × ω :

uε − u0 − wε → 0 in H1
0 (Ω). (wε is a corrector )

It is clear that wε has to satisfy

wε → 0 in H1
0 ((0,1− α)× ω) et wε = −u0 on {1} × ω.
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The choice of the corrector is based on:

Lemma
Si w is a solution to∆w = 0 in (0,+∞)× ω,

w = −u0 on {0} × ω, w = 0 on (0,+∞)× ∂ω,

There exists C > 0, α > 0 independent of ε such that∫
S 1
ε

|∇w |2 dx ≤ Ce−
α
ε

∫
S0

|∇w |2 dx , S
`

= (`,+∞)× ω.

The corrector is defined by

wε (X1,X2) = w
(

1− X1

ε
,X2

)
.
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By consequence, we have

Theorem

If f ∈ L2
(

Ω̃
)
, ∂X1 f ∈ L2

(
Ω̃
)
, then

|uε − u0 − wε|L2(Ω̃) ,
∣∣∇X2 (uε − u0 − wε)

∣∣
L2(Ω̃) = o(ε),∣∣∂X1 (uε − u0 − wε)
∣∣
L2(Ω̃) = o(1).

Moreover, if u0 is independent of X1 we obtain∫
Ω̃
|∇ (uε − u0 − wε)|2 dx ≤ Ce−

α
ε .
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Abstract problems

−ε∂2
x1

uε − ∂2
x2

uε = f .

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,
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Abstract problems

−ε∂2
x1

uε − ∂2
x2

uε = f .

An abstract approach to this theory is given in (E.
Sanchez-Palencia 1992, S. Zhang 2006) where the following
operator equation is considered

εAuε + Buε = f .

where A and B are linear operators defined on Hilbert spaces.

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,
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Abstract problems

There are also some previous works on singular perturbations
of variational inequalities (Lions, Stampacchia 1968,
Stampacchia 1969){
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,

A : V → V ′, B : W →W ′: monotone operators V ⊂W .

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,
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Abstract problems

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,

A : V → V ′, B : W →W ′: monotone, bounded, coercive and
hemicontinuous.
(V , |·|V ) et (W , |·|W ) : (separable, reflexive Banach spaces),
V ∩W = V ,W .
K 6= ∅: a closed convex set of V ∩W :
f ∈ (V ∩W )′, ε > 0, there exists a solution uε ∈ K .
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Abstract problems

Theorem

Suppose that f ∈W ′ and let uε be solution to (??). Then we
have when ε→ 0

(i) uε is bounded in W independently of ε, (18)
(ii) εuε → 0 in V , (19)
(iii) εAuε → 0 in V ′, (20)
(iv) 〈εAuε,uε〉V → 0. (21)
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Abstract problems

uε is bounded in W ,
Suppose that |uε − v0|W is unbounded. For some sequence
εk → 0 one has then

|uεk − v0|W → +∞.

Taking v = v0 in the variational equation, we derive

εk 〈Auεk ,uεk − v0〉V + 〈Buεk ,uεk − v0〉W ≤ 〈f ,uεk − v0〉W
≤ |f |W ′ |uεk − v0|W .

It follows that

εk 〈Auεk ,uεk − v0〉V
|uεk − v0|W

+
〈Buεk ,uεk − v0〉W
|uεk − v0|W

≤ |f |W ′ . (22)

This is impossible.
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Abstract problems

εuε → 0 in V ,
Since

ε 〈Auε,uε − v0〉V ≤ C (23)

for some constant C independent of ε. If (uε − v0) is not
bounded in V , we have -up to a subsequence-

ε |uε − v0|V ≤ C
|uε − v0|V

〈Auε,uε − v0〉V
→ 0

〈εAuε,uε〉V → 0.
From the monotonicity of A we have

ε 〈Auε, v〉V ≤ ε 〈Auε,uε〉V + 〈Av , ε (v − uε)〉V . (24)

and from the variational inequality we get

ε 〈Auε,uε〉V ≤ 〈εAuε, v0〉V + C.
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Abstract problems

Thus,
ε 〈Auε, v − v0〉V ≤ C + 〈Av , ε (v − uε)〉V , (25)

Choosing v ∈ v0 + B1, where B1 is the unit ball of V , we arrive
to

ε 〈Auε, v1〉V ≤ C′, ∀v1 ∈ B1,

and for some subsequence

εAuε ⇀ ψ in V ′.

Passing to the limit in (25) we derive

〈ψ, v − v0〉V ≤ C, ∀v ∈ V

and thus ψ = 0.
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Abstract problems

For any v ∈ K we have by the variational inequality and the
monotonicity of B

ε 〈Auε,uε〉V ≤ 〈εAuε, v〉V + 〈f ,uε − v〉W + 〈Bv , v − uε〉W .

Let (εk )k be a sequence such that

εk 〈Auεk ,uεk 〉V → lim
ε→0

sup ε 〈Auε,uε〉V , uεk ⇀ ũ in W .

Then passing to the limit

lim
ε→0

sup ε 〈Auε,uε〉V ≤ 〈f , ũ − v〉W + 〈Bv , v − ũ〉W , ∀v ∈ K .

(26)
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Abstract problems

Since K is convex, there exists a sequence vn ∈ K such that
vn → ũ. Thus

lim
ε→0

sup ε 〈Auε,uε〉V ≤ 0.

Thanks to the monotonicity

lim
ε→0

inf ε 〈Auε,uε〉V ≥ 0.

εAuε ⇀ 0 in V ′.
For every v1 ∈ B1,

ε 〈Auε, v1〉V ≤ ε 〈Auε,uε〉V + |Av1|V ′ (ε+ |εuε|V )

≤ ε 〈Auε,uε〉V + C (ε+ |εuε|V )→ 0.



Convergence results Asymptotic Expansion Correctors Abstract Singular Perturbations

Abstract problems

When ε→ 0, if uεk ⇀ ũ in W , then u is a solution of{
〈Bũ, v − ũ〉W ≥ 〈f , v − ũ〉W , ∀v ∈ K̄ W ,

ũ ∈ K̄ W .
(27)

and Buεk ⇀ Bũ in W ′, 〈Buεk ,uεk 〉W → 〈Bũ, ũ〉W .

If B is
strongly monotone in the sense that for some δ > 0 and β > 1

〈Bu − Bv ,u − v〉W ≥ δ |u − v |βW , ∀v ,u ∈W (28)

then the solution ũ of (27) is unique and one has

uε → ũ in W .
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Abstract problems

When ε→ 0, if uεk ⇀ ũ in W , then u is a solution of{
〈Bũ, v − ũ〉W ≥ 〈f , v − ũ〉W , ∀v ∈ K̄ W ,

ũ ∈ K̄ W .
(27)

and Buεk ⇀ Bũ in W ′, 〈Buεk ,uεk 〉W → 〈Bũ, ũ〉W . If B is
strongly monotone in the sense that for some δ > 0 and β > 1

〈Bu − Bv ,u − v〉W ≥ δ |u − v |βW , ∀v ,u ∈W (28)

then the solution ũ of (27) is unique and one has

uε → ũ in W .
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Abstract problems

If the variational inequality (27) has a solution in V , then uε is
bounded in V and there exists always a sequence uεk such that

uεk ⇀ ũ in V and W , (29)

where ũ ∈ K is solution to (27).
In addition if B satisfies (28), one has

|uε − ũ|W = o
(
ε1/β

)
. (30)
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Abstract problems

Let us consider the following variational inequality defined as
∫

Ω
a(x ,∇εuε) · ∇ε (vε − uε) dx ≥ 〈f , vε − uε〉W 1,p

0 (Ω)
, ∀vε ∈ Kε,

uε ∈ Kε
(31)

where Kε 6= ∅ is a closed convex subset of W 1,p
0 (Ω) for all

ε > 0. We make the following standard assumptions:
Carathéodory condition, Growth condition, Monotonicity,
Coercivity.

Theorem

Assume in addition that there exists a sequence
(wε) ⊂W 1,p

0 (Ω) , wε ∈ Kε for all ε > 0, s.t.

ε∇X1wε and ∇X2wε are bounded in Lp (Ω) (32)

independently of ε, then uε satisfies the same estimates.
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Abstract problems

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,

Examples:
Isotopic S.P.

uε ∈ K0 =
{

v ∈ H1
0 (Ω) |v (x) ≥ 0, a.e. x ∈ Ω

}
,

ε

∫
Ω

a (∇uε) · ∇ (v − uε) dx +

∫
Ω

uε (v − uε) dx ≥
∫

Ω
f (v − uε) dx , ∀v ∈ K0,
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Abstract problems

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,

Examples:
Anisotropic S.P.{

−ε∆X1uε −∆X2uε + g (x ,uε) = f dans Ω,

uε ∈ H1
0 (Ω) ∩ Lp (Ω) ,
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Abstract problems

{
ε 〈Auε, v − uε〉V + 〈Buε, v − uε〉W ≥ 〈f , v − uε〉V∩W , ∀v ∈ K ,
uε ∈ K ,

Examples:
Anisotropic S.P.{

−ε∆p1,X1uε −∆p2,X2uε = f dans Ω,
uε = 0 sur ∂Ω.
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Mosco convergence type

The sets limε→0Kε and limε→0Kε are defined as

w ∈ as − limε→0Kε iff
∃wε ∈ Kε , ε∇X1wε, ∇X2 (wε − w) → 0 in Lp (Ω) , as ε→ 0.

w ∈ aw − limε→0Kε iff
∃wεk ∈ Kεk , εk∇X1wεk , ∇X2 (wεk − w) ⇀ 0 in Lp (Ω) , as εk → 0.

We say that the sequence (Kε) of subsets of W 1,p
0 (Ω)

converges to K (Kε
a→ K), if

aw − limε→0Kε = as − limε→0Kε = K.

where K is a closed convex set in

W (Ω) :=
{

u ∈ Lp (Ω)
∣∣∣∇X2u ∈ [Lp (Ω)]

n−q
, u (X1, ·) ∈W 1,p

0

(
ΩX1

)
, a.e. X1 ∈ Π1

}
.
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Mosco convergence type

Theorem

Assume that Kε
a→ K as ε→ 0, then -up to a subsequence- we

have

uε ⇀ ũ ε∇X1uε ⇀ 0, ∇X2uε ⇀ ∇X2 ũ in Lp (Ω) , (33)

where ũ is a solution to
∫

Ω
a(x ,∇X2u) · ∇X2 (v − u) dx ≥ 〈f , v − u〉W(Ω) , ∀v ∈ K,

u ∈ K

Moreover, if a is strongly monotone then the previous
convergences hold strongly.
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Mosco convergence type

Obstacle problems

For ε > 0, set

Kε =
{

v ∈W 1,p
0 (Ω) | v ≥ ψε a.e. in Ω

}
ψε ∈W 1,p

0 (Ω). Assume that

ε∇X1ψε → 0, ∇X2ψε → ∇X2ψ0 in Lp (Ω) as ε→ 0.

Then
Kε

a→ K := {v ∈ W (Ω) | v ≥ ψ0 a.e. in Ω} .
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Mosco convergence type

An elasto-plastic problem

We set

Kε = Kβε :=
{

v ∈W 1,p
0 (Ω) | |∇εv | ≤ βε a.e. in Ω

}
,

βε ∈ L∞ (Ω) . Assume that

ε∇X1βε → 0, ∇X2βε → ∇X2β0 in L∞ (Ω) as ε→ 0.

where β0 > 0 a.e. in Ω, then

Kβε
a→ Kβ0 :=

{
v ∈ W (Ω) |

∣∣∇X2v
∣∣ ≤ β0 a.e. in Ω

}
.
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Mosco convergence type
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