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Position of the problem

Let Ω be a bounded open set of Rn, p be a real number, with
1 < p <∞ and q its conjugate. We denote by K a closed
convex subset of W 1,p

0 (Ω) containing 0 and satisfying

max (u, v) , min (u, v) ∈ K, ∀u, v ∈ K. (1)

For example:
- equations; K =W 1,p

0 (Ω) ,
- obstacle problems;
K =

{
u ∈W 1,p

0 (Ω) : u (x) ≥ ψ (x) , for a.e. x ∈ Ω0

}
, Ω0 is a

subset of Ω and ψ is a given function on Ω0,
- elasto-plastic torsion problem;
K =

{
u ∈W 1,p

0 (Ω) : |∇u (x)| ≤ c, for a.e. x ∈ Ω0

}
, c ≥ 0.
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Position of the problem

Now, let a(x , ξ) = (ai(x , ξ))1≤i≤n and a0(x , ξ) be a family of
Carathéodory functions defined on Ω×Rn+1 and satisfying for
all ξ = (ξi)i , ξ

′ =
(
ξ′i
)

i ∈ Rn+1 and for a.e. x in Ω, there exist
nonnegative constants α, β, ϑ ∈ Lq(Ω) such that

∑
0≤i≤n

ai(x , ξ)ξi ≥ α
∑

1≤i≤n
|ξi |p , (2)∑

0≤i≤n

(
ai(x , ξ)− ai(x , ξ′)

) (
ξi − ξ′i

)
≥ 0, (3)

|ai(x , ξ0, ξ1, . . . , ξn)| ≤ ϑ (x) + β
∑

0≤i≤n
|ξi |p−1 . (4)

Then for f in Lq(Ω), we consider u solution of the following
nonlinear variational inequality∣∣∣∣∣∣

u ∈ K,

〈Au, v − u〉Ω ≥
∫

Ω
f (v − u) dx , ∀v ∈ K, (5)

where A is a nonlinear operator defined from W 1,p
0 (Ω) into its

dual by

〈Au, v〉 =

∫
Ω

a(x ,u,∇u)·∇vdx+

∫
Ω

a0(x ,u,∇u)vdx , ∀v ∈W 1,p
0 (Ω) .
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Position of the problem
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Position of the problem

Example

For n = 1 and p = 2, let v ∈ H1
0 (0,1) be the nonnegative

function defined by

v (x) =
3
√

3
2

xχ(0, 1
3 ) + sin (πx)χ( 1

3 ,1),

where χA denotes the characteristic function of the set A.
Consider

K =
{

w ∈ H1
0 (0,1) : w ≥ v a.e. in (0,1)

}
,

a0 = 0 and a : R→ R is a single-valued function (Graph).
A is monotone and satisfies the above coercivness and growth
conditions.
Hence, the solution to (5), for

f (x) = π2 sin (πx)χ( 1
3 ,1).

exists and moreover it is not necessary unique, it is enough to
check that the functions

uλ = λ sin (πx) + (1− λ) v , ∀λ ∈ [0,1] .

In fact we have

Auλ(x) := − d
dx

a
(

d
dx

uλ

)
= f ,

which means that uλ is the solution to (5) and moreover u0 = v
is the minimal solution.
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Perturbed problem

Let ` > 0 be a real number. We denote by Ω` = (−`, `)× Ω.
The points in Rn+1 are denoted by (y , x) with x ∈ Rn and the
gradient operator defined over Rn+1 as

∇′ = (∂y ,∇) with ∇ = (∂x1 , ∂x2 , ..., ∂xn ) .

We set

K` =
{

v ∈W 1,p
0 (Ω`) | v(y , .) ∈ K a.e. in (−`, `)

}
.

This is a closed convex subset of W 1,p
0 (Ω`) . For f ∈ Lq(Ω), let

u` be the solution of the variational inequality∣∣∣∣∣∣∣∣∣∣
u` ∈ K`,∫

Ω`

|∂yu`|p−2 ∂yu`∂y (v − u`) dxdy +

∫ `

−`
〈Au`, v − u`〉dy

≥
∫

Ω`

f (x) (v − u`) dxdy , ∀v ∈ K`.

(6)

It is clear that all the foregoing hypotheses assumed on the
monotone operator A can be adapted to the operator
−∂y

(
|∂yv |p−2 ∂yv

)
+ Av in addition to the strict monotonicity.

Therefore, there exists a unique solution u` of (6).
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Perturbed problem

Lemma

Suppose that f ∈ Lq(Ω) is nonnegative and the assumptions
(1)-(4) are satisfied. Then

(i) (u`)`>0 is a nondecreasing sequence of nonnegative
functions bounded above by any solution of Problem (5),

(ii) for all `0 > 0, there exists a constant C (`0) independent of
` such that

|u`|1,p,Ω`0
≤ C (`0) .

Lemma

Under the assumptions of above Lemma, the solution u` of (6)
converges to ũ, as ` goes to +∞, a solution of (5).
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converges to ũ, as ` goes to +∞, a solution of (5).



Variational inequalities in bounded domains Variational inequalities in unbounded domains

Perturbed problem

Theorem

Suppose that f ∈ Lq(Ω) is nonnegative and the assumptions
(1)-(4) are satisfied. Then, there exists a minimal solution of (5)
i.e.

ũ (x) = min {u (x) , u solution to (5)} , ũ ∈ K

is solution to (5). Moreover, if u1 and u2 are the minimal
solutions of (5) obtained by replacing f with f1 and f2
respectively, then, if f1 ≤ f2, we have u1 ≤ u2.

Remark
The results of the theorem remain true for a nonnegative
distribution f in W−1,q (Ω).
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Noncoercive variational inequalities

Employing the results of the previous section, we aim to extend
the study to more general variational inequalities.∣∣∣∣∣∣

u ∈ K,

〈Au, v − u〉 ≥
∫

Ω
F (x ,u) (v − u) dx , ∀v ∈ K, (7)

where F : Ω×R→ R is a nonnegative monotone Carathéodory
function satisfying∣∣∣∣ F (x , ·) : R→ R is continuous and nondecreasing for a.e. x ∈ Ω,

F (·, r) : Ω→ R is measurable ∀r ∈ R,
(8)

F (x ,u) ∈ Lq (Ω) , ∀u ∈ Lp∗
(Ω) ,

1
p∗

=
1
p
− 1

n
. (9)



Variational inequalities in bounded domains Variational inequalities in unbounded domains

Noncoercive variational inequalities

Here we will give a general condition related to our technique of
construction but the existence of the minimal solution remains
our main goal. Let us define the sequence of functions un as
follows∣∣∣∣∣∣∣∣

u0 = 0,
un ∈ K,

〈Aun, v − un〉 ≥
∫

Ω
F (x ,un−1) (v − un) dx , ∀v ∈ K,

(10)

where un is the minimal solution of the variational inequality in
the last line of (10). Its existence is guaranteed by Theorem 4
since F (x ,un−1) ∈ Lq (Ω).
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Noncoercive variational inequalities

We also denote
F∞ := lim

n→∞
F (.,un),

which may also be infinite on some subset. Assume that

F∞ ∈ Lq (Ω) . (11)

Note that the above assumption is satisfied, for example, if
supr≥0 F (., r) ∈ Lq (Ω) .

Then the following lemma gives a
characteristic property about the existence of a solution to (7)
related to the above scheme.

Lemma

Let F be a nonnegative function satisfying the hypotheses (8),
(9) and suppose that the assumptions (2)-(4) are fulfilled. If (11)
is satisfied then u∞, the limit of un, belongs to K and is a
solution to (7).
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Noncoercive variational inequalities

The following theorem shows that (11) is more than just a
simple condition and u∞ is more than just a simple solution of
(7).

Theorem

Under the assumptions (1)-(4), (8), (9), we have the
equivalence between the following assertions

i) (7) has at least one solution,
ii) (7) has a minimal solution,

iii) the hypothesis (11) holds.

Moreover if the hypothesis (11) holds, then u∞, the limit of un,
belongs to K and is the minimal solution to (7) i.e.

u∞ (x) = min {u (x) , u solution to (7)} a.e. on Ω. (12)
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Noncoercive variational inequalities

A variant of the above result

Assume that F̄ : Ω× R+→ R is a Carathéodory function
satisfying the following Lipschitz condition:∣∣F̄ (x , r)− F̄ (x , s)

∣∣ ≤ k |r − s| , x ∈ Ω, r , s ∈ R+, (13)

F̄ (x ,0) ∈ Lq (Ω) is a nonnegative function. (14)

Then, as a consequence of Theorem 6, we have

Corollary

Assume that the assumptions (1)-(4), (13) and (14) are
satisfied and for p ≥ 2n+2

n+2 there exists a solution to∣∣∣∣∣∣
u ∈ K,

〈Au, v − u〉 ≥
∫

Ω
F̄ (x ,u) (v − u) dx , ∀v ∈ K. (15)

Then (15) has a minimal solution.
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Variational inequalities with coercive operator

Let ω be a bounded open subset of Rn−1, n ≥ 2, and Kω be a
closed convex subset of W 1,p

0 (ω) containing 0 and such that

max (u, v) , min (u, v) ∈ Kω, ∀u, v ∈ Kω. (16)

For x ∈ R×ω we set x = (x1,X2) with X2 = (x2, ..., xn) . Also,
we denote by K the closed convex subset of
W 1,p

loc (R×ω) = ∪a>0W 1,p ((−a,a)× ω) defined by

K := W 1,p
loc (R;Kω)

:=
{

v ∈W 1,p
loc (R×ω) | v = 0 on R×∂ω and v(x1, .) ∈ Kω for a.e. x1 ∈ R

}
.
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Variational inequalities with coercive operator

Then for a nonnegative f in Lq
loc (R,Lq (ω)) , we consider the

following nonlinear variational inequality defined on the infinite
cylinder Ω = R×ω∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ K,∫
R×ω

a(x ,u,∇u) · ∇ ( (v − u)) dx +

∫
R×ω

a0(x ,u,∇u) (v − u) dx

≥
∫
R×ω

f (v − u) dx ,

∀v ∈ K, ∀ϕ ∈ D (R) , ϕ ≥ 0.
(17)

We also assume that there exists h ∈ Lq (ω) such that

f (x1,X2) ≤ h (X2) for a.e. (x1,X2) ∈ R× ω. (18)
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Variational inequalities with coercive operator

For ` > 0, we set

Ω` = (−`, `)2 × ω,
and for simplicity we also set 〈., .〉`,ω instead of

∫ `
−` 〈., .〉ω dx1.

We denote by (y , x1,X2) the points in Ω` and by K` the closed
convex subset of W 1,p

0 (Ω`) defined by

K` :=
{

v ∈W 1,p
0 (Ω`) | v(y , x1, .) ∈ Kω, a.e. in (−`, `)2

}
.

Then consider u` solution to∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u` ∈ K`,∫
Ω`

|∂yu`|p−2 ∂yu`∂y (v − u`) dxdy +

∫ `

−`
〈Au`, v − u`〉`,ω dy

≥
∫

Ω`

f (x1,X2) (v − u`) dxdy , ∀v ∈ K`,

(19)
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Variational inequalities with coercive operator

where A is our operator. Under the above assumptions, the
problems (19) has a unique solution u` ∈ K`. Then, we have

Theorem
The sequence (u`)`>0 is a nonnegative nondecreasing
sequence in ` converging towards some ũ, as ` goes to +∞, a
nonnegative solution of (17).
There exists a minimal nonnegative solution to (17) i.e.
ũ = min {u solution to (17), u ≥ 0} ∈ K is a solution to (17).
Moreover, let u1 and u2 be the minimum of nonnegative
solutions to (17) obtained by replacing f with f1 and f2
respectively. Then if f1 ≤ f2, we have u1 ≤ u2.
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Noncoercive variational inequalities

The same result cane shown for the following nonlinear
variational inequality∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ K,∫
R×ω

a(x ,u,∇u) · ∇ (ϕ (v − u)) dx +

∫
R×ω

a0(x ,u,∇u)ϕ (v − u) dx

≥
∫
R×ω

F (x ,u)ϕ (v − u) dx , ∀v ∈ K, ∀ϕ ∈ D (R) , ϕ ≥ 0,

(20)
where the function F is defined as and we assume that

h (X2, r) := sup
x1∈R

F (x1,X2, r) ,

and
h (X2,u) ∈ Lq (ω) , ∀u ∈ Lp∗

(ω) . (21)
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Noncoercive variational inequalities
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